CHEMISTRY OF AN ACYLOXYIODINANE, THE INTERMEDIATE IN IODOSOBENZOATE CATALYZED CLEAVAGE OF ACTIVE ESTERS

Robert A. Moss,^{*1a} Paolo Scrimin,^{1a,b} Robert T. Rosen^{1c} Department of Chemistry and Center for Advanced Food Technology (Cook College) Rutgers, The State University of New Jersey New Brunswick, New Jersey 08903

<u>Summary</u>: The 1-acetoxy-1,2-benziodoxol-3(1H)-one intermediate in the <u>o</u>-iodosobenzoate cleavage of <u>p</u>-nitrophenyl acetate can be directly observed in dimethyl sulfoxide.

Some current efforts to develop efficient catalysts for the decontamination of toxic phosphates focus² on <u>o</u>-iodosobenzoate (<u>1</u>) or its derivatives,³ and on the hydrated surfactant-aldehyde $2^{,4,5}$ Not only are these reagents potent <u>O</u>-nucleophiles in moderately basic aqueous cationic micellar solutions, but the <u>O</u>-phosphorylated or acylated intermediates derived from their attack on reactive phosphates or esters, rapidly hydrolyze and regenerate the initial catalysts. These features distinguish <u>1</u> and <u>2</u> from such nucleophilic decontamination reagents as peroxides,⁶ benzimidazole,⁷ oximates,⁸ or

alkenylphosphonium ions⁹ that require either strongly basic conditions, stoichiometric quantities, or turn over too slowly.¹⁰ The mechanism by which acylated or phosphorylated $\underline{2}$ is hydrolyzed seems clear,⁴ but for <u>la</u>, the reactive form of <u>l</u>,³ it is uncertain.^{3c} Here we report new and elucidating mechanistic experiments.

In pH 8 aqueous micellar cetyltrimethylammonium chloride (CTAC1) solution, <u>o</u>-iodosobenzoate (<u>1</u>), in its preferred 1-oxido-1,2-benziodoxol-3(1<u>H</u>)-one valence tautomeric form (<u>1a</u>),¹¹ cleaves <u>p</u>-nitrophenyl acetate (PNPA) with <u>k</u> $_{\mu}$ = 0.018 s⁻¹, <u>k</u>₂ = 180 M⁻¹s⁻¹, eq. (1).^{3a} Acetate <u>3</u> was proposed as an intermediate, but it did not accumulate under these conditions. Authentic <u>3</u>, available from the reaction of <u>1a</u>-OH and acetic anhydride,¹² hydrolyzes in pH 8 CTAC1 solution with <u>k</u> $_{\mu}$ ~0.4 s⁻¹, about 20 times faster than <u>3</u> forms from 1a and PNPA.^{3a}

When we now carry out the reaction of <u>1a</u> and PNPA in DMSO,¹³ monitoring by nmr (DMSO-<u>d6</u>), we observe the formation of <u>3</u> (δ_{Me} 2.25) and acetate (δ_{Me} 1.80), coincident with the

disappearance of PNPA (δ_{Me} 2.32). Most importantly, in DMSO where no OH⁻ is present to destroy 3, this species largely accumulates. It is, however, attacked by iodosobenzoate <u>la</u> with the formation of acetate and anhydride <u>4</u>. The products can be controlled by manipulating the reactant concentrations: with excess <u>la</u>, <u>3</u> builds up and then decays as <u>la</u> converts it to <u>4</u>¹⁴ and acetate (Figure 1); with excess PNPA, <u>3</u> is relatively stable and acetate formation is minimized (Figure 1, inset).¹⁵

Nucleophilic attack on 3 might occur at any of three sites (<u>cf</u>., <u>3</u>[']). The formation of <u>4</u> from <u>1a</u> and <u>3</u> points to direct attack at iodine (<u>b</u>). In agreement, we find that the reaction of <u>3</u> with NaOMe/DMSO-<u>d6</u> rapidly affords ether <u>5</u> (δ_{Me} 4.17) and acetate. A similar reaction occurs with methanol, but much more slowly.¹⁶ The <u>absence</u> of methyl acetate (δ_{Me} 1.99, δ_{MeO} 3.56) in the methoxide reaction excludes pathway <u>a</u>.

Although the conversion of $\underline{3}$ to $\underline{5}$ is readily understood in terms of direct attack at iodine ($\underline{3}'$, \underline{b}), we cannot completely exclude attack of methoxide at the lactone carbonyl (\underline{c}), affording ester <u>6</u> with loss of acetate. Ester <u>6</u> could then react with methoxide at I=0, subsequently reforming lactone ether <u>5</u> with expulsion of the ester methoxyl group.¹⁷ In a cogent experiment that bears on the conversion of <u>3</u> to <u>1a</u> with OH⁻, we find that reaction of 0.1 mmol of <u>3</u> with 1 ml of 22.06 atom- $\frac{7}{8}$ H₂¹⁸O (containing 7 mg of NaOH) in 3 ml of DMSO gives <u>1/1a</u> with 21.64 atom- $\frac{7}{8}$ ¹⁸O in the <u>iodoso</u> position and only 2.00 atom- $\frac{7}{8}$ ¹⁸O in the lactone group.¹⁸ Indeed, so reactive are the iodine atoms of these iodinanes toward nucleophiles, that even iodosobenzoate (<u>1a</u>) itself exchanges with H₂¹⁸O in an identical experiment.¹⁹

These findings strongly imply that path <u>b</u> is the dominant, if not exclusive route for nucleophilic attack on 3, with subsequent conversion to <u>la</u>, <u>4</u>, or <u>5</u> (for nucleophiles OH⁻, <u>la</u>, or MeO⁻, respectively).²⁰ The most reasonable mechanism for the turnover of acetylated (or phosphorylated) iodosobenzoate catalysts under aqueous micellar conditions is therefore

hydroxide attack at iodine, with the formation of an anionic $12 - I - 4^{11}, 2^{11}$ intermediate (<u>e.g</u>, <u>7</u>) that subsequently loses acetate (or phosphate).²² In basic CTACl solution, where [OH⁻] is high at the cationic micellar surface, intermediates such as <u>3</u> are very rapidly hydrolyzed via <u>7</u>, regenerating <u>1/1a</u>, so that the overall cleavage of reactive esters (or phosphates) becomes catalytic. In DMSO, the reaction is merely stoichiometric in iodosobenzoate so that, with the substrate in excess, an intermediate like 3 accumulates.

Finally, we see now why micellar iodosobenzoates are such remarkably efficient esterolytic catalysts. The hypervalent¹¹ iodine atom plays a double role. Its special bonding²³ creates a highly polarized I^+-0^- bond in <u>la</u>, where the substantial negative charge on oxygen confers potent nucleophilicity for the substrate cleavage step. Secondly, the ability of the resulting 10-I-3 intermediate (<u>e.g.</u>, <u>3</u>) to associate with an additional anionic ligand, affording for example the 12-I-4 species <u>7</u>, provides a facile mechanism for turnover and completion of the catalytic cycle, particularly in aqueous micellar solution.

<u>Acknowledgments</u>. We are grateful to the U.S. Army Research Office for financial support, and to the Fulbright Foundation for a travel grant to P.S.

Figure 1. Concentration vs. time profile for cleavage of PNPA by <u>o</u>-iodosobenzoate sodium salt (<u>1a</u>) in DMSO-<u>d</u>₆; [PNPA] = 6 x 10⁻² M; [<u>1a</u>] = 1.2 x 10⁻¹ M. <u>Inset</u>. The same reaction, but with [PNPA] = 7 x 10⁻² M and [<u>1a</u>] = 5.6 x 10⁻² M. In both cases, \diamondsuit = PNPA, \square = <u>3</u>, Δ = CH₃COO⁻Na⁺. The solid lines have been arbitrarily drawn.

REFERENCES AND NOTES

- (1) (a) Department of Chemistry. (b) Visiting Professor from Università di Padova; Fulbright Scholar, 1985-6. (c) Center for Advanced Food Technology.
- (2) Seiders, R.P. Army Res. Develop. & Acquis. Jan/Feb, 1986, pp. 14,15.
- (3) (a) Moss, R.A.; Alwis, K.W.; Bizzigotti, G.O. J. Am. Chem. Soc. <u>1983</u>, <u>105</u>, 681.
 (b) Moss, R.A.; Alwis, K.W.; Shin, J-S. <u>Ibid</u>. <u>1984</u>, <u>106</u>, 2651. (c) Moss, R.A.; Kim, K.Y.; Swarup, S. <u>Ibid</u>. <u>1986</u>, <u>108</u>, 788.
- (4) Menger, F.M.; Whitesell, L.G. J. Am. Chem. Soc. 1985, 107, 707.
- (5) Breslow recently introduced a hydrophobic, macrocycTic zinc hydroxide reagent whose catalytic function in Brij micelles is comparable to that of <u>2</u>, but less efficient than surfactant derivatives of <u>1/1a</u>: Gellman, S.H.; Petter, R.; Breslow, R. <u>J. Am.</u> <u>Chem. Soc. 1986</u>, <u>108</u>, 2388.
- (6) Bunton, C.A.; Mhala, M.M.; Moffatt, J.R.; Monarres, D.; Sarelli, G. <u>J. Org. Chem.</u> <u>1984</u>, <u>49</u>, 426.
- (7) Bunton, C.A.; Hong, Y.S.; Romsted, L.S.; Quan, C. J. Am. Chem. Soc. <u>1981</u>, <u>103</u>, 5785, 5788.
- (8) Bunton, C.A.; Nelson, S.E.; Quan, C. <u>J. Org. Chem</u>. <u>1982</u>, <u>47</u>, 1157.
- (9) Jaeger, D.A.; Bolikal, D. <u>J. Org. Chem</u>. <u>1985</u>, <u>50</u>, 4635.
- (10) A more complete literature survey appears in Moss, R.A.; Ihara, Y. J. Org. Chem. 1983, 48, 588.
- (11) Reviews: (a) Koser, G.F. in "The Chemistry of Functional Groups," Supplement D, Patai, S.; Rappoport, Z., Ed., Wiley, New York, 1983, pp. 721 <u>ff</u>. (b) Nguyen, T.T.; Martin, J.C. in "Comprehensive Heterocyclic Chemistry," Vol. 1, Meth-Cohn, O., Ed., Pergamon, Oxford, 1984, pp. 563 <u>ff</u>.
- (12) Baker, G.P.; Mann, F.G.; Sheppard, N.; Tetlow, A.J. J. Chem. Soc. <u>1965</u>, 3721.
- (13) DMSO has a dielectric constant of 49, similar to the estimated value of ~36 for the Stern layers of cationic micelles: <u>cf</u>., Fendler, J.H. "Membrane Mimetic Chemistry," Wiley, New York, 1982, pp. 19,20.
- (14) Anhydride 4 (mp 227°C dec.; lit.¹² mp 225°C dec.) forms in 80% yield from the reaction of 0.48 mmol of <u>1a</u> with 0.24 mmol of PNPA in 3 ml of DMSO. Its ir carbonyl band (1680 cm⁻¹) is in accord with the lit. value.¹²
- (15) Anhydride <u>4</u> does not form under pH 8 micellar conditions because the rapid destruction of <u>3</u> by OH⁻ supercedes the reaction of <u>3</u> with <u>1a</u>. Cleavage of <u>4</u> under micellar condition is slow (<u>k</u> ~4.6 x 10^{-5} s⁻¹) and it would accumulate if it were formed.
- (16) Ether 5 was previously prepared by methanolysis of $\underline{3}$;¹² our sample was identical (mp, ir) to the literature description.
- (17) Indeed, an attempt to prepare <u>6</u> by Cl_2/OH^- oxidation of <u>o</u>-iodo methyl benzoate led only to 1/1a.
- (18) ¹⁸⁰ analyses employed a VG 7070 (United Kingdom) mass spectrometer. For analysis minus iodoso oxygen, chemical ionization (isobutane) was used. Ethanolamine-modified isobutane chemical ionization was used to detect the radical molecular ion of the entire molecule; cf., Bowen, D.V.; Field, F.H. Org. Mass. Spec. 1974, 9, 195.
- entire molecule; cf., Bowen, D.V.; Field, F.H. Org. Mass. Spec. <u>1974</u>, <u>9</u>, 195.
 (19) The recovered <u>la</u> had 14.22 atom-% 180 at iodoso oxygen and 2.30 atom-% 180 at the lactone oxygens. Iodosobenzene has been reported to exchange with basic alcoholic H₂¹⁸O; Gragerov, I.P.; Levit, A.F. <u>J. Org. Chem. USSR 1963</u>, <u>33</u>, 544.
 (20) The minimal lactone ¹⁸O incorporation could reflect either a poorly competitive
- (20) The minimal lactone ¹⁸0 incorporation could reflect either a poorly competitive incursion of pathway <u>c</u>, or mechanistically irrelevant lactone carbonyl exchange that is not associated with acetate expulsion.
- (21) Amey, R.L.; Martin, J.C. <u>J. Org. Chem</u>. <u>1979</u>, <u>44</u>, 1779.
- (22) The facile ¹⁸0 exchange of <u>la</u> suggests that a 12-I-4 intermediate with two hydroxide ligands (<u>i.e.</u>, <u>7</u> with OH in place of OCOCH₃) may also be encountered.
- (23) See ref. 11a, pp. 739, 740.

(Received in USA 28 October 1986)